The Crystal and Molecular Structure of 4,4'-Dichlorodiphenyl Sulfone

By J. G. Sime
Chemistry Department, The University, Glasgow W. 2, Scotland
and S. C. Abrahams
Bell Telephone Laboratories, Murray Hill, New Jersey, U.S.A.

(Received 1 May 1959 and in revised form 17 June 1959)

4, 4^{\prime}-dichlorodiphenyl sulfone forms monoclinic crystals, space group $I 2 / a$, in a cell with

$$
a=20.204 \pm 0.010, b=5.009 \pm 0.010, c=12.259 \pm 0.010 \AA, \beta=90^{\circ} 34^{\prime} \pm 15^{\prime}
$$

Abstract

containing four molecules. The crystal structure has been solved by two-dimensional Patterson and by trial-and-error methods. The position and thermal vibration parameters were initially refined by use of double Fourier series. Final refinement was obtained by a complete anisotropic least-squares analysis of the 1158 observed and 548 unobserved structure factors. The three position and six thermal parameters of all atoms except hydrogen have been determined. The bond distances of interest include $\mathrm{S}-\mathrm{C}=1.765 \pm 0.006, \mathrm{~S}-\mathrm{O}=1.432 \pm 0.005, \mathrm{C}-\mathrm{C}=1.380 \pm 0.003, \mathrm{Cl}-\mathrm{C}=1.736 \pm 0.007 \AA$; among the bond angles are $\mathrm{C}-\mathrm{S}-\mathrm{O}=107^{\circ} 39^{\prime} \pm 17^{\prime}, \mathrm{C}-\mathrm{S}-\mathrm{C}=104^{\circ} 48^{\prime} \pm 24^{\prime}, \mathrm{O}-\mathrm{S}-\mathrm{O}=120^{\circ} 24^{\prime} \pm 25^{\prime}$. The dihedral angle between the planes of the aromatic rings is $79^{\circ} 27^{\prime} \pm 18^{\prime}$ and between the plane of each ring and the common C-S-C plane it is $84^{\circ} 25^{\prime} \pm 18^{\prime}$.

1. Introduction

The geometrical configuration of the sulfone group, $X-\mathrm{SO}_{2}-Y$, has now been studied in several molecules. The bond distribution about the sulfur atom is found to depart significantly from that of a regular tetrahedron (for a review, see Abrahams, 1956), with some dependence on the substituent atoms X and Y. The sulfone group is of particular interest when linked to two aromatic rings, in view of the molecular orbital investigation of diphenyl sulfone by Koch \& Moffitt (1951). These authors predicted overlap of the sulfur atom $3 d$ orbitals with the adjacent carbon atom $2 p$ orbitals, resulting in an angle of 90° between the normals to the aromatic rings and the common C-S-C plane.

The crystal structure of diphenyl sulfone has not yet been solved. However, two-dimensional studies of the isomorphous crystals, $4,4^{\prime}$-dichlorophenyl sulfone (Toussaint, 1948), 4,4'-dibromodiphenyl sulfone (Toussaint, 1948) and 4,4'-diiododiphenyl sulfone (Keil \& Plieth, 1955) have been reported. In the case of the chloro- and iodo-compounds, Fourier series projected along one axis only were computed; a second electrondensity projection, along a $12.34 \AA$ axis, was also studied for the bromo-compound. It was not possible to obtain accurate interatomic dimensions in any of these crystals. The present investigation of the chlorocompound has utilized the complete three-dimensional X-ray diffraction data. The subsequent results will provide, inter alia, a comparison with a simultaneous neutron diffraction study (Bacon \& Curry, 1960) of the same crystal.

2. Crystal data

4,4'-dichlorodiphenyl sulfone, (p - Cl. $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)_{2} \mathrm{SO}_{2}$; mol.wt. $=287.2 ; \mathrm{m} . \mathrm{p} .=147.5^{\circ} \mathrm{C}, D_{m}=1.533 \mathrm{~g} . \mathrm{cm} .^{-3} ; \quad D_{x}=$ $1.537 \mathrm{~g} . \mathrm{cm} .^{-3}$. Monoclinic, with $a=20 \cdot 204 \pm 0 \cdot 010, b=$ $5 \cdot 009 \pm 0 \cdot 010, \quad c=12 \cdot 259 \pm 0 \cdot 010 \AA, \quad \beta=90 \cdot 57 \pm 0 \cdot 25^{\circ}$ (Toussaint (1948) obtained the values $20.5,5 \cdot 01$, $12 \cdot 3 \mathrm{kX}, \beta=90^{\circ} 31^{\prime}$, with the a - and c-axes interchanged). Four molecules per unit cell. ($h k l$) present only when $h+k+l=2 n$, ($h 0 l$) only when $h=2 n, l=2 n$. Space group $C_{2 h}^{6}-12 / a$ or $C_{s}^{4}-I a$ (the body-centered cell chosen by Toussaint in 1948 has been retained here to avoid a conflict in the literature). The $N(z)$ test of Howells, Phillips \& Rogers (1950), using the complete three-dimensional intensity data, clearly indicated the most probable space group to be $12 / a$. Molecular symmetry required by this space group in the absence of disorder, 2 or $\overline{1}$. Absorption coefficient for Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), $0.718 \mathrm{~mm}^{-1}$. Volume of the unit cell, $1240 \cdot 6 \AA^{3}$. Total number of electrons per unit cell, $F(000)=584$.

3. Experimental

Well formed plates of $4,4^{\prime}$-dichlorodiphenyl sulfone recrystallized from benzene solution, were kindly provided by Dr H. H. Szmant of Duquesne University. All intensity records (Ilford 'Industrial-G' film) were made using Mo $K \alpha$ radiation, except for some preliminary investigations of the ($h 0 l$) layer by $\mathrm{Cu} K \alpha$ radiation which later were discarded. Two crystals were used, of dimensions $0.5 \times 0.3 \times 0.3 \mathrm{~mm}$ and $1.0 \times 0.5 \times 0.5 \mathrm{~mm}$, the latter only in obtaining the
weakest intensities. The intensity measurements were made visually, with the aid of both the multiple exposure and the multiple-film techniques. Sheets of 0.0008 in. nickel foil were interleaved between films in the second technique, resulting in an intensity reduction of $2 \cdot 65: 1$ for normal exposures. In upper layers recorded with the Weissenberg camera, this ratio was modified by the obliquity factor (Rossman, 1956), with $1 /(1-c)=1.142$ and $\mu t=0.842$ in Rossman's notation.

The ratio of the strongest to the weakest intensity (taken as unity) was 8,800 in $h k 0 ; 37,200$ in $h k 1$; 8,800 in $h k 2 ; 3,645$ in $h k 3$ and 3,000 in $h k 4$, recorded with the precession camera. In the remaining layers, recorded with a modified Weissenberg camera based on a design by Abrahams (1954), this ratio was 37,950 in $h 0 l ; 22,300$ in $h l l ; 3,905$ in $h 2 l ; 646$ in $h 3 l ; 374$ in $h 4 l ; 315$ in $h 5 l ; 92$ in $h 6 l$ and 4 in $h 7 l$. Intensities measured on the precession camera were corrected for the Lorentz-polarization factor by use of the Waser (1951) and the Grenville-Wells \& Abrahams (1952) charts. Those measured on the Weissenberg camera were corrected in the usual way, including Tunell's (1939) rotation factor for the upper layer lines. Absorption corrections were neglected, since the maximum differences among the corrections were so small. Extinction corrections were not made.

The resulting structure factors were placed on a common scale, using the 351 reflections measured in two different layers. An approximation to the standard deviation in the structure factors was obtained by a comparison of these 351 independent pairs of observations. This standard deviation was very nearly a constant percentage of the magnitude of the structure factor, with $\sigma F_{i} \simeq 0 \cdot 092\left|F_{i}\right|$. The complete set of 1706 structure factors on the final, absolute, scale is given in Table 1 under $F_{\text {meas. }}$.

4. Analysis of the structure

The following analysis was carried out without reference to the publication by Toussaint (1948) on $4,4^{\prime}$ dichlorodiphenyl sulfone. Of the two possible space groups, that indicated by the Howells, Phillips \& Rogers (1950) test was chosen, and was later justified by the quality of fit obtained among the measured and calculated structure factors. In $I 2 / a$, assuming no disorder, the molecular symmetry required of the four molecules in the unit cell is 2 or $\overline{1}$, with the sulfur atom in a special position. The known bond arrangements in sulfone groups (Abrahams, 1956) eliminate the center, hence requiring the sulfur atom to have coordinates $\frac{1}{4}, y, 0 ; \frac{3}{4}, \frac{1}{2}+y, \frac{1}{2} ; \frac{3}{4}, \bar{y}, 0 ; \frac{1}{4}, \frac{1}{2}-y, \frac{1}{2}$.

The x - and z-coordinates of the chlorine and carbon atoms were immediately apparent from an evaluation of the Patterson projection along the b-axis (Fig. 1). The coordinates of the oxygen atom were deduced by assuming a S-O bond distance of $1.43 \AA$ and

Fig. 1. Patterson projection of one-half unit cell of $4,4^{\prime}$-dichlorodiphenyl sulfone along the b-axis.
$\mathrm{O}-\mathrm{S}-\mathrm{O}$ bond angle of 120°. An over-all isotropic temperature factor for B, in the expression

$$
\exp \left(-B(\sin \theta / \lambda)^{2}\right)
$$

of $3.76 \AA^{2}$ was given by Wilson's (1942) method, using McWeeny's (1951) atomic form factors for carbon and oxygen and James \& Brindley's (1931) form factors for sulfur and chlorine. Structure factors calculated with these x-, z - and B-values resulted in an agreement factor R of $0 \cdot 43$ for the $160(h 0 l)$ observations measured with $\mathrm{Cu} K \alpha$ radiation. Refinement in this projection was effected by use of difference Fourier syntheses which revealed large anisotropic thermal vibrations of the chlorine and sulfur atoms. The expression used in calculating anisotropic temperature factors was

$$
\exp \left[-\left\{L+M \cos ^{2}(\omega-\beta)\right\} s^{2}\right]
$$

where $4 L=B_{\min .}, 4 M=B_{\text {max. }}-B_{\min .}, s=\sin \theta / \lambda, \omega=$ $\tan ^{-1} l / h$ and $\beta=$ angle between maximum vibration direction and the a-axis (Cochran, 1951). After four difference syntheses based on 189 structure factors measured with Mo $K \alpha$ radiation, $\mathrm{Cl}\left(B_{\max .}\right)=6 \cdot 40$, $\mathrm{Cl}\left(B_{\text {min. }}\right)=3 \cdot 80, \mathrm{~S}\left(B_{\max .}\right)=6 \cdot 00, \mathrm{~S}\left(B_{\min .}\right)=3 \cdot 00 \AA^{2}$ and $\beta=65^{\circ} 50^{\prime}$: the previous isotropic value, $3.76 \AA^{2}$, of B for carbon and oxygen remained unchanged. The R value at this stage was $0 \cdot 185$. An $F_{\text {meas. }}$ Fourier series projected along the b-axis is shown in Fig. 2(a).

The Patterson projection along the c-axis was not readily interpretable. The y-coordinates were instead obtained by trial and error. The best agreement with

Table 1. Measured and calculated values of the 4,4'-dichlorodiphenyl sulfone structure factors

 \%

Fig. 2. Fourier projection of one unit cell of 4,4'-dichlorodiphenyl sulfone (a) along the b-axis and (b) along the c-axis.
the measured structure factors was obtained for $y_{S}=0 \cdot 135$. The complete set of ($h k 0$) structure factors then gave $R=0 \cdot 43$. Examination of one Fourier series projected along the c-axis led to coordinates with $R=0.344$. The degree of overlap in this projection (Fig. 2(b)) hindered further refinement. The atomic coordinates obtained from the two-dimensional refinement process are given in Table 2.

5. Three-dimensional least-squares refinement

The method of least squares was chosen for refining the parameters, using the three-dimensional data. Initially, 1071 observed and 475 unobserved structure factors, together with those calculated from the coordinates in Table 2, were processed using the $N Y X R 2$ program for the IBM 704 computer. In forming the 1546 conditional equations, unobserved terms were taken as one-half the maximum value. Weights were assigned on the basis of $w_{h k l}^{\frac{1}{h}} \propto 100 /\left|F_{\text {meas. }}(h k l)\right|$, with w (max.) $=25$ for $\left|F_{\text {meas. }}(h k l)\right| \leq 20$ (Abrahams, 1955): unobserved terms had a weight of unity (4% maximum

Table 2. Final two-dimensional positional coordinates

Atom	x	y	z
Cl	0.0319	0.946	0.1592
S	0.2500	0.135	0
O	0.2250	0	0.9051
C_{1}	0.1870	0.368	0.0458
C_{2}	0.1362	0.505	0.9755
C_{3}	0.0884	0.697	0.0106
C_{4}	0.0903	0.726	0.1162
C_{5}	0.1433	0.583	0.1845
C_{6}	0.1917	0.399	0.1497

value). The atomic form factors used were those of Berghuis et al. (1955) for carbon and oxygen and of Viervoll \& Øgrim (1949) for sulfur and chlorine. Because the NY XR2 program is not designed to handle anisotropic thermal vibrations, isotropic values of $B=5 \cdot 00 \AA^{2}$ for chlorine and of $4 \cdot 30 \AA^{2}$ for sulfur replaced those found in the ($h 0 l$) difference syntheses. In the first three least-squares iterations, the only parameters varied were x_{i}, y_{i}, z_{i} for all i-atoms except hydrogen, and the scale factor. In the following two refinement cycles, the individual values of B_{i} were also taken as variable, and in the final two cycles the contribution of the hydrogen atoms was included in the calculated structure factors, assuming the hydrogen atoms lie on the extended lines $\mathrm{C}_{2}-\mathrm{C}_{5}$ and $\mathrm{C}_{3}-\mathrm{C}_{6}$, with $\mathrm{C}-\mathrm{H}=1.08 \AA$. The corresponding values of R^{\prime} (this differs from the usual agreement factor R in the treatment of the unobserved terms: in R^{\prime} these are taken as one-half of the maximum value and in consequence $R^{\prime} \simeq R+0.03$) and $\Sigma w \Delta^{2}$ (the quantity minimized in the least-squares process, where $w=$ weight and $\Delta=\left(\left|F_{\text {meas. }}\right|-\mid F_{\text {calc. } . \mid))}\right.$ are given in Table 3. The rather constant value of R^{\prime} and of $\Sigma w \Delta^{2}$ in the final

Table 3. Course of refinement using

NY XR2 program

	R^{\prime}	$\sum w \Delta^{2}$
Parameters obtained from $2 D$-refinement	$0 \cdot 446$	$1,373,060$
lst cycle: $x_{i} y_{i} z_{i}$ variable, B_{i} constant	$0 \cdot 397$	988,090
2nd cycle: $x_{i} y_{i} z_{i}$ variable, B_{i} constant	$0 \cdot 360$	804,880
3rd cycle: $x_{i} y_{i} z_{i}$ variable, B_{i} constant	$0 \cdot 341$	700,940
4th cycle: $x_{i} y_{i} z_{i}$ and B_{i} variable	$0 \cdot 306$	545,070
5th cycle: $x_{i} y_{i} z_{i}$ and B_{i} variable	$0 \cdot 293$	462,310
6th cycle: $x_{i} y_{i} z_{i}$ and B_{i} variable and hy-		
\quad drogen atom contributions included in		
structure factors, but not varied	$0 \cdot 273$	522,667
7th cycle: $x_{i} y_{i} z_{i}$ and B_{i} variable and hy-		
drogen atom contributions included in structure factors, but not varied	$0 \cdot 269$	$\mathbf{4 6 5 , 6 6 6}$

Note 1. 1540 observational equations used in this refinement. Note 2. $w=25$ for $\left|F_{\text {meas. }}\right| \leq 20$, and $w=10,000 \div\left|F_{\text {meas. }}\right|^{2}$ for $\left|F_{\text {meas. }}\right|>20$.
cycles indicated the refinement process was probably as complete as the $N Y X R 2$ program would permit. An examination of the coordinate shifts ($\Delta \xi_{i}$) obtained from the 7 th cycle and the corresponding standard deviations in these shifts $\left(\sigma \xi_{i}\right)$ revealed that many $\Delta \xi_{i}$ were still significant (Table 4), particularly in the temperature factor for chlorine. To obtain further refinement, it was clear that the anisotropy of thermal vibration present in this crystal had to be determined.

The comprehensive least-squares program written by Dr H. A. Levy and Dr W. R. Busing for the ORACLE computer was then made available to us, through the courtesy of Dr Levy and Dr Busing and of the Chemistry Division of Oak Ridge National Laboratory. In this program, temperature factors of the form

$$
\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{23} k l+2 \beta_{31} l h\right)\right]
$$

Table 4. Comparison of coordinate-shifts and corresponding standard deviations from 7th NY XR2 least-squares cycle

	Δx	σx	Δy	σy	Δz	σz	ΔB	σB
C_{6}	0.00003	0.00048	0.00127	0.00200	0.00083	0.00079	0.105	0.16
C_{5}	0.00027	0.00048	-0.00068	0.00200	0.00091	0.00079	0.295	0.16
C_{4}	0.00037	0.0048	0.00066	0.00200	0.00171	0.00079	0.298	0.16
C_{3}	0.00004	0.00048	-0.00063	0.00200	0.00092	0.00079	0.173	0.16
C_{2}	0.00028	0.00048	0.00127	0.00200	0.00025	0.00079	0.106	0.16
C_{1}	0.00016	0.00048	0.00080	0.00200	0.00071	0.00079	0.104	0.16
O	-0.00017	0.0039	0.00023	0.00177	-0.0058	0.00066	0.192	0.15
Cl	0.00005	0.00020	0.00010	0.00092	0.00019	0.00032	0.319	0.08
S	0	0	-0.00005	0.00085	0	0	-0.023	0.07

are assumed for each atom, and in the least-squares process the complete normal equation set, including off-diagonal terms, is solved. For the general positions in $I 2 / a$, all symmetry related atoms have the same coefficients $\beta_{i j}$ except for a sign change in β_{12} and β_{23} for atoms related by the 2 -fold axis: for sulfur, β_{12} and β_{23} are zero (cf. Levy (1956)). The Viervoll \& Øgrim (1949) atomic form factors for sulfur and chlorine previously used were replaced in the ORACLE refinement. The factor of Tomiie \& Stam (1958), based on Slater atomic wave-functions, was taken for sulfur. A modified Berghuis et al. (1955) Cl^{-}-curve was used for chlorine, in which $f_{\mathrm{Cl}}=17.0$ at $\sin \theta / \lambda=0$ and $f_{\mathrm{Cl}}=f_{\mathrm{Cl}}{ }^{-}$at $\sin \theta / \lambda \geq 0 \cdot 2$. The weights used were as in the $N Y X R 2$ refinement, except for those of the unobserved terms (which were again taken as one-half maximum value): these now were assigned the maximum weight of 25 . The hydrogen atom contributions were included in the calculated structure factors throughout, using Bacon's (1957) isotropic values of B (Table 5). The initial hydrogen atom coordinates, also given in Table 5, were Bacon's (1957) x - and z-values together with y-values obtained by solving these x-, z-coordinates against the equation of the benzene ring plane found from the 7 th $N Y X R 2$ cycle.

Table 5. Initial hydrogen atom coordinates

Atom	x	y	z	B
H_{2}	0.1375	0.3452	0.8944	6.1
H_{3}	0.0447	0.6703	0.9558	6.9
H_{5}	0.1489	0.7183	0.2708	6.9
H_{6}	0.2319	0.4152	0.2044	6.1

The total number of terms used in the ORACLE program was increased to 1706, of which 1158 were observed structure factors. A requirement was placed on each term that rejected it from inclusion in an observational equation if $3 F_{\text {calc. }}<F_{\text {meas. }}$. Structure factors based on the coordinates from the 7 th $N Y X R 2$ cycle contained 141 such rejected terms. Those based on the final ORACLE coordinates contain 126 rejected terms, and are indicated by a dagger in Table 1. Of these, 76 refer to unobserved terms and need not have been rejected.
The ORACLE is able to solve a determinant of order not exceeding 48 , so the 78 th-order determinant resulting from the 25 position, 52 thermal and 1 scale
factor parameters was solved in two, overlapping, parts. In all, six cycles of refinement were computed: no significant changes in R^{\prime} or $\Sigma w \Delta^{2}$ occurred after the 4th cycle. More important, all subsequent $\Delta \xi_{j}$'s were less than their $\sigma \xi_{j}$. The final two cycles then completely ensured convergence. The variation in R^{\prime} and in $\Sigma w \Delta^{2}$ in the course of the ORACLE refinement is shown in Table 6. In splitting the 78th-order deter-

Table 6. Course of refinement using ORACLE program

	R^{\prime}	$\Sigma w \Delta^{2}$
Final $N Y X R 2$ coordinates: variables	$0 \cdot 2562$	406,987
Ist cycle: $x_{i} y_{i} z_{i}, \beta_{11} \beta_{22}, \beta_{33}, \beta_{12}, \beta_{23}, \beta_{31}$	$0 \cdot 1759$	183,484
	0.1589 0.1467	140,496
,	$\begin{aligned} & 0 \cdot 1467 \\ & 0.1430 \end{aligned}$	$116,892$ $112,371$
3rd cycle: $x_{i} y_{i} z_{i}, \beta_{11}, \beta_{22}, \beta_{33}, \beta_{12}, \beta_{23}, \beta_{31}$	$0 \cdot 1419$	109,379
4th cycle: $x_{i} y_{i} z_{i}, \beta_{11}, \beta_{22}, \beta_{33}, \beta_{12}, \beta_{23}, \beta_{31}$	0.1415	107,434
5th cycle: $x_{i} y_{i} z_{i}, \beta_{11}, \beta_{22}, \beta_{33}, \beta_{12}, \beta_{23}, \beta_{31}$	0.1415	107,548
6th cycle: $x_{i} y_{i} z_{i}, \beta_{11}, \beta_{22}, \beta_{33}, \beta_{12}, \beta_{23}, \beta_{31}$	$0 \cdot 1414$	107,481

Note 1. 1706 observational equations used in this refinement. Note 2. Final R^{\prime} corresponds to $R=0.108$ with unobserved $F_{\text {meas. }}$ taken as one half maximum value.
minant, all parameters of any atom were kept as a group, and in general, nearest neighbor atoms were included in each cycle. After the 3rd cycle, new hydrogen atom coordinates (Table 7) were deduced,

Table 7. Final deduced hydrogen atom positional			
coordinates			
Atom	x	y	z
H_{2}	0.1321	0.3557	0.8943
H_{3}	0.0473	0.6646	0.9568
H_{5}	0.463	0.7257	0.285
H_{6}	0.2310	0.4210	0.2042

based on $\mathrm{C}-\mathrm{H}=\mathrm{l} .08 \AA$ and being located on the extended $\mathrm{C}_{2}-\mathrm{C}_{5}$ and $\mathrm{C}_{3}-\mathrm{C}_{6}$ lines. Hydrogen atom parameters were not refined at any stage. It is interesting to note the large reduction of nearly $4: 1$ (Table 6) in $\Sigma w \Delta^{2}$, obtained on going from an isotropic analysis using the diagonal approximation in solving the determinant, to a complete anisotropic least-squares analysis.

6. Final coordinates

The final values of $x_{i}, y_{i}, z_{i}, \beta_{i j}$ resulting from the 6 th ORACLE refinement cycle are given in Table 8.

Atom	x	y	z	β_{11}	β_{22}	β_{38}	β_{12}	β_{13}	β_{23}
Cl	0.0327	0.9381	$0 \cdot 1621$	$0 \cdot 00454$	$0 \cdot 07857$	$0 \cdot 01700$	$0 \cdot 00883$	0.00281	$0 \cdot 01043$
S	0.2500	$0 \cdot 1546$	0	0.00312	0.03686	$0 \cdot 00755$	0	-0.00025	0
0	0.2244	0.0126	0.9073	$0 \cdot 00403$	0.04319	$0 \cdot 00926$	-0.00275	-0.00045	-0.00551
C_{1}	$0 \cdot 1868$	0.3696	0.0456	0.00281	0.03571	0.00762	-0.00069	-0.00047	0.00373
C_{2}	$0 \cdot 1352$	$0 \cdot 4367$	0.9760	$0 \cdot 00272$	0.05968	0.00808	-0.00053	-0.00048	$0 \cdot 00333$
C_{3}	0.0877	0.6117	0.0112	$0 \cdot 00296$	$0 \cdot 07263$	0.01019	0.00207	-0.00011	$0 \cdot 00680$
C_{4}	0.0926	$0 \cdot 7173$	$0 \cdot 1164$	$0 \cdot 00297$	0.05671	0.01165	0.00190	0.00143	$0 \cdot 00785$
C_{5}	0.1431	0.6448	0.1867	$0 \cdot 00347$	0.06119	$0 \cdot 00922$	0.00313	-0.00011	$0 \cdot 00051$
C_{6}	$0 \cdot 1910$	$0 \cdot 4743$	$0 \cdot 1503$	0.00331	$0 \cdot 04502$	$0 \cdot 00773$	$0 \cdot 00192$	-0.00006	$0 \cdot 00073$

These coordinates correspond to $R^{\prime}=0 \cdot 1414$ (Table 6) or $R=0.108$ if unobserved $F_{\text {meas. }}$ terms are taken as less than double the half-maximum (asterisked) values given in Table 1. The actual calculated structure factors are listed under $F_{\text {calc. }}$ in Table 1.

7. Standard deviations

The standard deviations in the positional coordinates of Table 8 were obtained directly from the least squares derived variance-covariance matrix in the usual way, and these values are listed in Table 9.

Table 9. Standard deviations $\left(\times 10^{3}\right)$ in the final positional coordinates

Atom	σx	σy	σz
Cl	$0 \cdot 10$	0.43	0.18
S	0	0.35	0
O	0.20	0.76	0.32
C_{1}	0.24	0.91	0.38
C_{2}	0.26	1.23	0.43
C_{3}	0.29	1.42	0.51
C_{4}	0.28	1.23	0.53
C_{5}	0.29	1.31	0.49
C_{6}	0.27	1.08	0.42

The standard deviation in derived functions, f, is taken as

$$
\left[\sum_{i} \sum_{j}\left(\frac{\partial f}{\partial p_{i}}\right)\left(\frac{\partial f}{\partial p_{j}}\right) C_{i j}+\sum_{i}\left(\frac{\partial f}{\partial q_{i}}\right)^{2} \sigma_{i}^{2}\right]^{\frac{1}{2}}
$$

where p_{i}, p_{j} are the least-squares parameters, $C_{i j}$ is the variance-covariance matrix element, q_{i} are the cell parameters and σ_{i} their standard deviations. Values so obtained are stated hereafter with the corresponding function.

8. Rotational oscillations

The effect of rotational oscillations upon the bond lengths has been estimated from the r.m.s. atomic displacements in Table 15, assuming the sulfur atom undergoes purely translational vibrations. The resulting apparent atomic displacement towards the sulfur atom is then $0.002 \AA$ for C_{1} and less than $0.006 \AA$ for the remaining atoms, with the exception of chlorine. The chlorine atom is displaced $0.012 \AA$ towards the sulfur atom, resulting in an apparent reduction in the $\mathrm{Cl}-\mathrm{C}_{4}$ bond length of $0.007 \AA$. The bond length corrections due to rotational oscillation are thus in each
case no more than the standard deviation in that bond length, and have not been included in the following sections.

9. Molecular dimensions

The bond lengths, bond angles and dihedral angles within a molecule of $4,4^{\prime}$-dichlorodiphenyl sulfone, together with the standard deviations in these functions, are given in Table 10. The final position coordinates used are those in Table 8.

Table 10. Molecular dimensions, with standard deviations

$$
\begin{aligned}
& \mathrm{C}_{1}-\mathrm{C}_{2}=1.382 \pm 0.007 \AA \quad \mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2}=121.1 \pm 0.52^{\circ} \\
& \mathrm{C}_{2}-\mathrm{C}_{3}=1.373 \pm 0.009 \quad \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}=119.2 \pm 0.53 \\
& \mathrm{C}_{3}-\mathrm{C}_{4}=1.395 \pm 0.009 \quad \mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}=119.2 \pm 0.55 \\
& \mathrm{C}_{4}-\mathrm{C}_{5}=1.378 \pm 0.009 \quad \mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}=121.8 \pm 0.54 \\
& \mathrm{C}_{5}-\mathrm{C}_{6}=1.367 \pm 0.008 \quad \mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}=118.9 \pm 0.56 \\
& \mathrm{C}_{6}-\mathrm{C}_{1}=1.386 \pm 0.007 \quad \mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{C}_{1}=120 \cdot 1 \pm 0.52 \\
& \mathrm{C}_{2}-\mathrm{C}_{6}^{\prime}=3.854 \pm 0.011 \quad \mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{Cl}=119.7 \pm 0.49 \\
& \mathrm{Cl}_{2}-\mathrm{C}_{4}=1.736 \pm 0.007 \quad \mathrm{C}_{5}-\mathrm{C}_{4}-\mathrm{Cl}=118.7 \pm 0.52 \\
& S-\mathrm{C}_{1}=1.765 \pm 0.006 \\
& \mathrm{~S}-\mathrm{O}=1.432 \pm 0.005 \\
& \text { Plane } b \text { Plane } b^{\prime}=79 \cdot 5 \pm 0 \cdot 30^{\circ} \\
& \text { Plane } b: \mathrm{C}_{1} \mathrm{SC}_{1}^{\prime}=84 \cdot 4 \pm 0 \cdot 30^{\circ}
\end{aligned}
$$

The mean length of the aromatic $\mathrm{C}-\mathrm{C}$ bond is $1 \cdot 380 \pm 0 \cdot 003 \AA$. The shortest non-bonded $C-C$ contact between the two benzene rings, $\mathrm{C}_{2}-\mathrm{C}_{6}^{\prime}$, is 3.854 ± 0.011 \AA. The sum of the internal angles of the benzene ring is $719 \cdot 9 \pm 0 \cdot 4^{\circ}$. By transforming the monoclinic axes to an orthogonal set, with $x^{\prime}=x+z \cos \beta, y^{\prime}=y, z^{\prime}=$ $z \sin \beta$, the least squares derived equation for the plane of the benzene ring, the sulfur and the chlorine atoms is:

$$
\begin{equation*}
x^{\prime}+1 \cdot 4422 y^{\prime}-0 \cdot 6327 z^{\prime}-6 \cdot 1304=0 \tag{a}
\end{equation*}
$$

In forming this equation, the sulfur and chlorine atoms were given thrice the weight of the carbon atoms. The distances of the atoms from plane (a) are given in Table 11. The equation of the mean plane of the six carbon atoms alone is:

$$
\begin{equation*}
x^{\prime}+1.4208 y^{\prime}-0.6327 z^{\prime}-6.0373=0 \tag{b}
\end{equation*}
$$

The distances of the atoms from plane (b) are also given in Table 11. No carbon atom lies significantly out of plane (b), although three carbon atoms lie out of plane (a).

Table 11. Out-of-plane distances, in $10^{-3} \AA$

	Distance from	
Atom	plane (a)	Distance from plane (b)
S	20 ± 2	62 ± 2
Cl	16 ± 2	12 ± 2
C_{1}	-24 ± 5	4 ± 5
C_{2}	-30 ± 6	-8 ± 6
C_{3}	-15 ± 7	0 ± 7
C_{4}	3 ± 6	12 ± 6
C_{5}	-28 ± 6	-15 ± 6
C_{6}	-16 ± 6	7 ± 6

10. Intermolecular distances

All distances less than $4 \AA$ in this crystal were computed in an exhaustive program written by Dr Busing.

Those which lie between molecules are given in Table 12. Three oxygen-carbon contacts of $3 \cdot 211,3 \cdot 243$ and $3.272 \AA$ are slightly shorter than the sum of the accepted oxygen-carbon van der Waals radii: the remaining distances are equal to or longer than this sum. A general view of the whole structure is given in Fig. 3.

Table 12. Intermolecular distances less than $4 \AA$, with standard deviations

$\mathrm{C}_{6} \cdots \mathrm{O}=3 \cdot 211 \pm 0.009 \AA$
 $\mathrm{C}_{1} \cdots \mathrm{O}=3.721 \pm 0.013 \AA$
 $$
\begin{aligned} & \mathrm{C}_{5} \cdots \mathrm{O}=3.243 \pm 0.010 \\ & \mathrm{C}_{6} \cdots \mathrm{O}=3.272 \pm 0.011 \\ & \mathrm{C}_{5} \cdots \mathrm{O}=3.455 \pm 0.010 \\ & \mathrm{C}_{2} \cdots \mathrm{O}=3.508 \pm 0.012 \\ & \mathrm{C}_{3} \cdots \mathrm{O}=3.654 \pm 0.010 \end{aligned}
$$

 $\mathrm{C}_{5} \cdots \mathrm{O}=3 \cdot 455 \pm 0 \cdot 010$

 $\mathrm{C}_{5} \cdots \mathrm{O}=3 \cdot 455 \pm 0 \cdot 010$

 $\mathrm{C}_{2} \cdots \mathrm{O}=3.508 \pm 0.012$

 $\mathrm{C}_{2} \cdots \mathrm{O}=3.508 \pm 0.012$

 $\mathrm{C}_{3} \cdots \mathrm{O}=3 \cdot 654 \pm 0.010$

 $\mathrm{C}_{3} \cdots \mathrm{O}=3 \cdot 654 \pm 0.010$
 $$
\mathrm{C}_{1} \cdots \mathrm{O}=3.729 \pm 0.013
$$
 $$
\mathrm{C}_{4} \cdots \mathrm{O}=3.996 \pm 0.011
$$
 $$
\mathrm{C}_{2} \cdots \mathrm{Cl}=3.976 \pm 0.010
$$
 $$
\mathrm{C}_{4}^{2} \cdots \mathrm{Cl}=3.981 \pm 0.010
$$
 $$
\mathrm{Cl} \cdots \mathrm{Cl}=3 \cdot 564 \pm 0.009
$$
 11. Principal axes of the anisotropic temperature factor

© hydrogen

The principal axes of the ellipsoid of thermal vibration were computed from the anisotropic temperature coefficients $\beta_{i j}$ in Table 8 by the method of Busing \& Levy (1958). Table 13 contains $\mu(r)$, the r.m.s. displacement of the atom along the r th principal axis, and $\varphi(r, i)$ the angles made by the r th principal axis with the i th direct-lattice vector. The $\beta_{i i}$ coefficients in Table 8 are also given in a form directly comparable with the B_{i} coefficients obtained from the 7th $N Y$ $X R 2$ refinement cycle, in Table 14. This table very

Table 13. The principal axes r.m.s. displacements and orientations

Atom	r	$\mu(r)$	$\varphi(r, a)$	$\varphi(r, b)$	$\varphi(r, c)$
	1	$0.427 \pm 0.003 \AA$	$58.5 \pm 0.52^{\circ}$	$57.2 \pm 0.59^{\circ}$	$49.2 \pm 0.75^{\circ}$
Cl	2	$0 \cdot 227 \pm 0.002$	$138 \cdot 6 \pm 0.78$	48.8 ± 0.85	86.5 ± 0.92
	3	0.297 ± 0.002	66.1 ± 1.05	58.6 ± 1.00	139.0 ± 0.76
	I	0.257 ± 0.002	$157 \cdot 2 \pm 3.83$	$90 \cdot 0$	66.7 ± 3.83
S	2	0.217 ± 0.002	$90 \cdot 0$	$180 \cdot 0$	$90 \cdot 0$
	3	$0 \cdot 236 \pm 0.002$	$112 \cdot 8 \pm 3 \cdot 82$	$90 \cdot 0$	156.7 ± 3.83
	1	$0 \cdot 197 \pm 0 \cdot 004$	71.3 ± 1.79	36.5 ± 1.91	$60 \cdot 2 \pm 2 \cdot 07$
O	2	0.299 ± 0.004	23.9 ± 8.27	113.7 ± 6.56	$87 \cdot 1 \pm 11 \cdot 44$
	3	0.284 ± 0.004	$75 \cdot 6 \pm 12 \cdot 53$	$64 \cdot 0 \pm 6 \cdot 23$	$150 \cdot 0 \pm 2 \cdot 47$
	1	0.264 ± 0.005	$123 \cdot 0 \pm 6.82$	$64 \cdot 7 \pm 3 \cdot 86$	$43 \cdot 4 \pm 5 \cdot 15$
C_{1}	2	$0 \cdot 196 \pm 0.005$	$89.3 \pm 5 \cdot 89$	$148 \cdot 9 \pm 4.47$	58.9 ± 4.35
${ }_{1}$	3	0.231 ± 0.005	$147 \cdot 0 \pm 6.83$	106.8 ± 6.56	116.9 ± 6.79
	1	0.287 ± 0.006	$102 \cdot 4 \pm 5 \cdot 40$	31.8 ± 6.05	$61 \cdot 0 \pm 5 \cdot 24$
C_{2}	2	0.226 ± 0.006	$43 \cdot 7 \pm 13 \cdot 16$	$101 \cdot 2 \pm 7.93$	$49 \cdot 0 \pm 10 \cdot 88$
2	3	0.245 ± 0.006	$48 \cdot 9 \pm 13 \cdot 39$	$60 \cdot 6 \pm 6.95$	$125 \cdot 4 \pm 11 \cdot 63$
	1	0.329 ± 0.007	$80 \cdot 9 \pm 3 \cdot 70$	$34 \cdot 7 \pm 3.52$	56.9 ± 4.04
C_{3}	2	0.231 ± 0.006	41.4 ± 8.57	117.4士 $4 \cdot 26$	$62 \cdot 2 \pm 7.19$
	3	$0 \cdot 263 \pm 0.006$	50.0 ± 8.70	$70 \cdot 3 \pm 5.75$	$134 \cdot 1 \pm 6 \cdot 74$
	1	0.336 ± 0.007	$69 \cdot 6 \pm 2 \cdot 62$	$57.5 \pm 2 \cdot 81$	$40 \cdot 1 \pm 2 \cdot 63$
C_{4}	2	0.228 ± 0.006	$136 \cdot 2 \pm 24 \cdot 52$	$111 \cdot 6 \pm 23 \cdot 15$	$53 \cdot 6 \pm 9 \cdot 18$
	3	0.237 ± 0.006	$126 \cdot 7 \pm 25 \cdot 66$	$40 \cdot 6 \pm 16 \cdot 40$	$104 \cdot 6 \pm 17 \cdot 39$
	1	0.302 ± 0.007	$129 \cdot 6 \pm 4 \cdot 64$	$140 \cdot 4 \pm 4 \cdot 66$	$89 \cdot 4 \pm 7.82$
C_{5}	2	0.241 ± 0.006	$41 \cdot 1 \pm 5 \cdot 14$	128.5 ± 4.68	78.4 ± 10.85
	3	$0 \cdot 266 \pm 0.006$	$80 \cdot 9 \pm 10 \cdot 11$	97.8 ± 8.80	$168 \cdot 4 \pm 10 \cdot 81$
	1	0.272 ± 0.006	$149.9 \pm 5 \cdot 76$	$120 \cdot 1 \pm 5 \cdot 77$	$89 \cdot 5 \pm 8 \cdot 58$
C_{6}	2	0.225 ± 0.006	$61 \cdot 6 \pm 5 \cdot 87$	$145 \cdot 2 \pm 7 \cdot 85$	$71 \cdot 9 \pm 13 \cdot 59$
	3	$0 \cdot 244 \pm 0.006$	$80 \cdot 9 \pm 10 \cdot 22$	$105 \cdot 8 \pm 12 \cdot 32$	$161 \cdot 9 \pm 13 \cdot 57$

clearly demonstrates the ineptness of the isotropic assumption in the case of $4,4^{\prime}$-dichlorodiphenyl sulfone.

Table 14. Comparison of $N Y X R 2 B_{i}$ and corresponding ORACLE $B_{i i}$

	B_{i}	B_{11}	B_{22}	B_{33}
C_{6}	$4 \cdot 38$	$5 \cdot 41$	$4 \cdot 52$	$4 \cdot 63$
C_{5}	$5 \cdot 09$	$5 \cdot 66$	$6 \cdot 14$	$5 \cdot 52$
C_{4}	$5 \cdot 50$	4.84	$5 \cdot 69$	6.98
C_{3}	$5 \cdot 39$	4.83	$7 \cdot 29$	$6 \cdot 11$
C_{2}	$4 \cdot 73$	$4 \cdot 44$	$5 \cdot 99$	$4 \cdot 84$
C_{1}	$3 \cdot 69$	4.58	$3 \cdot 58$	$4 \cdot 56$
0	$4 \cdot 95$	6.58	$4 \cdot 33$	$5 \cdot 55$
Cl	6.96	$7 \cdot 41$	$7 \cdot 89$	$10 \cdot 19$
S	3.94	$5 \cdot 09$	$3 \cdot 70$	$4 \cdot 53$

12. The thermal vibrations along the molecular axes

It is easier to visualize the thermal motions of the individual atoms with respect to a set of molecular axes than to their principal axes. A natural choice of molecular axes is that given by

$$
\mathbf{X}_{1} \propto \mathbf{V}, \mathbf{X}_{2} \propto \mathbf{V} \times \mathbf{W}, \mathbf{X}_{3} \propto \mathbf{X}_{1} \times \mathbf{X}_{2}
$$

where \mathbf{V} is $\mathbf{S}, \mathbf{C l}$ and \mathbf{W} is $\mathbf{C}_{5}, \mathbf{C}_{3}+\mathbf{C}_{6}, \mathbf{C}_{2}$. The amplitudes of thermal vibration along $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$ (corresponding to $U_{i=1}^{\frac{1}{i}}$ in Cruickshank's (1956) notation) are readily obtainable from $\mu(r)$, using the known angles between the principal axes and the molecular axes (not given here to conserve space). These amplitudes, $u(m)$ where $m=1,2,3$, are given in Table 15.

Table 15. R.m.s. displacements, with standard deviations, along the molecular axes

	$u(1)$	$u(2)$	$u(3)$
Atom	$u(1)$	0.020	
Cl	$0.239 \pm 0.002 \AA$	$0.330 \pm 0.002 \AA$	$0.395 \pm 0.002 \AA$
S	0.242 ± 0.001	0.233 ± 0.001	0.236 ± 0.002
O	0.281 ± 0.004	0.254 ± 0.004	0.255 ± 0.004
C_{1}	0.253 ± 0.005	0.209 ± 0.005	0.232 ± 0.005
C_{2}	0.273 ± 0.006	0.252 ± 0.006	0.237 ± 0.006
C_{3}	0.274 ± 0.007	0.283 ± 0.007	0.275 ± 0.006
C_{4}	0.249 ± 0.006	0.244 ± 0.006	0.316 ± 0.007
C_{5}	0.247 ± 0.006	0.297 ± 0.007	0.264 ± 0.006
C_{6}	0.236 ± 0.006	0.261 ± 0.006	0.246 ± 0.005

13. Rigid body vibrations

An alternative description of the thermal atomic motions in 4,4'-dichlorodiphenyl sulfone is possible in terms of the molecular rigid body vibrations. The method of Cruickshank (1956) was used to reduce the atomic transformed- $\beta_{i j}$ values to the two symmetric tensors $\tau_{i j}$ and $\omega_{i j}$. This complete calculation, based on the resulting $U_{i j}$ values for all 17 'heavy' atoms in this non-planar molecule, was performed on the DEUCE computer in the University of Glasgow.

The choice of molecular axes was $\mathbf{X}_{1}^{\prime} \propto \mathbf{C l}, \mathbf{C l}^{\prime}, \mathbf{X}_{2}^{\prime} \propto \mathbf{b}$, $\mathbf{X}_{3}^{\prime} \propto \mathbf{X}_{1}^{\prime} \times \mathbf{X}_{2}^{\prime}$, and the results are:

$$
\begin{aligned}
& \tau_{i j}= \\
& \left(\begin{array}{ccc}
6.013 \pm 0.216 & 0 & -0.470 \pm 0.219 \\
& 4.796 \pm 0.295 & 0 \\
& & 4.076 \pm 0.329
\end{array}\right) \\
& \omega_{i j}= \\
& \left(\begin{array}{ccc}
16.244 \pm 2.570 & 0 & -8.317 \pm 1.133 \\
& 12 \cdot 167 \pm 0.932 & 0 \\
& & 7.952 \pm 0.839
\end{array}\right)
\end{aligned}
$$

These tensors correspond to librations of the center of mass of $0.245 \pm 0.047,0.219 \pm 0.054$ and $0.202 \pm 0 \cdot 057$ \AA, and oscillations of $4.03 \pm 1 \cdot 62,3 \cdot 49 \pm 0.97$ and $2 \cdot 82 \pm 0.92^{\circ}$ respectively about $X_{1}^{\prime}, X_{2}^{\prime}$, and X_{3}^{\prime}.

14. Discussion

The bond arrangement within the sulfone group of $4,4^{\prime}$-dichlorodiphenyl sulfone, Table 10 , as in all other sulfone groups that have been measured, (for a review, see Abrahams, 1956) is not that of a regular tetrahedron. The $\mathrm{O}-\mathrm{S}-\mathrm{O}$ bond angle is consistently and very significantly greater than 109.5°, whereas the C-S-O and the C-S-C angles in the present molecule, as in the other cases measured, are significantly less than tetrahedral. The S-O bond length in this, as in most sulfones, appears to be very close to $1.43 \AA$, the standard double S-O bond distance. The C-S bond length of $1.765 \pm 0.006 \AA$ is significantly less than the standard single C-S bond length of $1.82 \AA$, in agreement with the measurements in other comparable sulfones. Indeed, this $\mathrm{C}-\mathrm{S}$ bond length in an $\mathrm{Ar}-\mathrm{S}^{\prime}-\mathrm{Ar}$ molecule ($\mathrm{Ar}=$ aromatic group) appears remarkably constant, whether S^{\prime} is a sulfide, sulfoxide or sulfone group. The dihedral angle made by the plane of the benzene ring with the $\mathrm{C}_{1}-\mathrm{S}-\mathrm{C}_{1}^{\prime}$ plane is $84 \cdot 7 \pm 0 \cdot 3^{\circ}$, in good agreement with Koch \& Moffitt's (1951) prediction of 90°, assuming overlap of the sulfur atom $3 d$ with the C_{1} atom $2 p$ orbitals. It is also very close to the corresponding dihedral angle of 82° found in diphenyl sulfoxide (Abrahams, 1957), as was considered likely in the study of the diphenyl sulfoxidediphenyl sulfone system (Abrahams \& Silverton, 1956). The slight but highly significant displacement of the chlorine and sulfur atoms out of the plane of the benzene ring is interesting although the only close contacts between these atoms and adjacent molecules is the $\mathrm{Cl} \cdots \mathrm{Cl}$ distance of $3.56 \AA$ and a $\mathrm{Cl} \cdots \mathrm{C}_{4}$ distance of $3.98 \AA$.

The three intermolecular C \cdots O distances of $3 \cdot 21$, $3 \cdot 24$ and $3 \cdot 27 \AA$ are most probably purely van der Waal's contacts: there are no angular relations involving these distances to indicate otherwise. Many cases of $\mathrm{C} \cdots \mathrm{O}$ contacts, in the length range $3 \cdot 14-3 \cdot 25 \AA$,
are given in the literature.* The usual van der Waal's $\mathrm{C} \cdots$ O distance of about $3 \cdot 3 \AA$ should hence presumably be revised to about $3 \cdot 2 \AA$.

An examination of the r.m.s. displacement of the atoms along the direction of the molecular axes (Table 15) shows that the atomic vibration along the length of the molecule is very constant, at about 0.25 \AA. The excursions in the direction normal to the benzene ring plane tend to increase from $0.23 \AA$ at the center to $0.33 \AA$ at the periphery of the molecule. Those normal to the length of the molecule in the plane of the benzene ring increase even more rapidly. No attempt has been made in this paper to extract the characteristic lattice frequencies, because of the possible accumulation of systematic $F_{\text {meas. }}$ errors in the anisotropic temperature factors.

A comparison of the coordinates obtained in the present study with those reported by Bacon \& Curry (1960) shows no disagreement, \dagger within the limit of 3 standard deviations of each measurement. This observation is of importance in demonstrating that X-ray and neutron diffraction studies produce essentially identical results.

It is a great pleasure to thank Dr H. H. Szmant for providing the crystals, Mr J. Rae for constructing the new Weissenberg camera, Prof. J. M. Robertson for his interest, Miss D. C. Leagus for modifying the $N Y X R 2$ program to accomodate $I 2 / a, \mathrm{Mr}$ A. Hatch for supervising the $N Y X R 2$ computations on the Service Bureau Corporation IBM 704 computer, Prof. E. G. Cox for communicating Tomiie and Stam's form factors prior to publication, Dr H. A. Levy and Dr W. R. Busing for the use of their least-squares program, for making the computations on ORACLE and for the hospitality given by them and the Chemistry Division of Oak Ridge National Laboratory, J. Anderson \& Co. Ltd. of Paisley, Scotland for a financial

* For example, $3 \cdot 14 \AA$ in furoic acid (Goodwin \& Thomson, 1954); $3.24 \AA$ in $\mathrm{N}, \mathrm{N}^{\prime}$ diglycyl-L-cystine dihydrate (Yakel \& Hughes, 1954); $3 \cdot 24 \AA$ in nicotinamide (Wright \& King, 1954); etc.
\dagger Except for the thermal parameter μ_{3} for sulfur (see Bacon \& Curry's (1960) paper).
grant to J. G. Sime, and finally Dr G. E. Bacon for communicating the results of his simultaneous neutron study prior to publication.

References

Abrahams, S. C. (1954). Acta Cryst. 7, 423.
Abrahams, S. C. (1955). Acta Cryst. 8, 661.
Abrahams, S. C. (1956). Quart. Rev. Chem. Soc. Lond. 10, 407.
Abrahams, S. C. (1957). Acta Cryst. 10, 417.
Abrahams, S. C. \& Silverton, J. V. (1956). Acta Cryst. 9, 281.
Bacon, G. E. (1957). Private communication.
Bacon, G. E. \& Curry, N. A. (1960). Acta Cryst. 13, 10.

Berghuis, J., Hanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Busing, W. R. \& Levy, H. A. (1958). Acta Cryst. 11, 450. Cochran, W. (1951). Acta Cryst. 4, 408.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 754.
Goodwin, T. H. \& Thomson, C. M. (1954). Acta Cryst. 7, 166.

Grenville-Wells, H. J. \& Abrahams, S. C. (1952). Rev. Sci. Instrum. 23, 328.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
James, R. W. \& Brindley, G. W. (1931). Z. Kristallogr. 78, 470.
Keil, C. \& Plieth, K. (1955). Z. Kristallogr. 106, 388.
Koce, H. P. \& Moffitt, W. E. (1951). Trans. Faraday Soc. 47, 7.
Levy, H. A. (1956). Acta Cryst. 9, 679.
McWeeny, R. (1951). Acta Cryst. 4, 513.
Rossman, M. G. (1956). Acta Cryst. 9, 819.
Tomie, Y. \& Stam, C. H. (1958). Acta Cryst. 11, 126.
Toussaint, J. (1948). Bull. Soc. Roy. Sci. (Liége), no. 4, 157.

Tunell, G. (1939). Amer. Min. 24, 448.
Viervoll, H. \& ØGrim, O. (1949). Acta Cryst. 2, 277.
Waser, J. (1951). Rev. Sci. Instrum. 22, 567.
Wilson, A. J. C. (1942). Nature, Lond. 150, 151.
Wright, W. B. \& King, G. S. D. (1954). Acta Cryst. 7, 283.

Yakel, H. L. \& Hughes, E. W. (1954). Acta Cryst. 7, 291.

